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Abstract
We show a local duality between the left and right finite-dimensional
representations on the enveloping algebra of sl(2)q , the generalized Lie algebra
introduced by Lyubashenko and Sudbery. This duality works in a general
context of algebras satisfying certain algebraic properties; our goal in this
paper is to prove that the enveloping algebra of sl(2)q satisfies these abstract
properties.

PACS numbers: 02.20.Sv, 02.10.Hh, 02.40.Gh

1. Introduction

In earlier papers (see [7, 10, 11]) we studied a local duality in a non-commutative framework
which extends well known local dualities on commutative Gorenstein rings and enveloping
algebras of finite-dimensional solvable Lie algebras (see [2]). This local duality is defined
by the last point Eµ in the minimal injective resolution of R. In fact, we have identified this
injective module with the underlying left module R0, i.e. the finite dual coalgebra of R. As
R0 has the natural structure of a bimodule, we have proved that Eµ has also a right module
structure in such a way that Eµ and R0 are isomorphic bimodules. In the case of commutative
Gorenstein rings there is a duality, given by the Ext functor; this duality was extended to
a non-commutative framework of algebras satisfying certain special conditions, and it was
shown that Eµ, or equivalently R0, represents this duality. I.e., the duality is defined by the
functor HomR(−, R0). As a consequence the categories of left and right finite-dimensional
representations are dual. Therefore the left and right behaviour of these algebras is symmetric.

We showed in [10] when this duality, the Bernstein duality, can be represented by a
bimodule and have characterized when this happens. Specifically, if K is a field of characteristic
zero and R a K-algebra which satisfies the Auslander–Gorenstein and Cohen–Macaulay
conditions, and idim(R) = µ = GKdim(R), then the functor ExtµR(−, R) defines a duality
between the categories of left and right finite-dimensional R-modules. If, in addition, R has
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the strong second-layer condition and the vector space dimensions of R/P and ExtµR(R/P, R)

coincide for every cofinite prime ideal P of R, then this duality is defined by R0.
There appear many examples of algebras satisfying all these properties in the previous

works. For instance, we prove it in [11] for the quantized enveloping algebra Uq(sl(2)), q being
a root of unity. Now, we consider another kind of quantization of the Lie algebra sl(2), the
generalized Lie algebra sl(2)q , as Lyubashenko and Sudbery define in [18]. Both authors start
with the definition of the generalized Lie algebra. This is a vector space with a bilinear bracket
operation and an auxiliary structure: the generalized antisymmetrizer, satisfying a version
of anticommutativity and Jacobi identity. Once the generalized Lie algebra is defined, they
construct its universal enveloping algebra. After this, they consider the quantized enveloping
algebra Uq(g), for any simple Lie algebra g, and prove that, in the case of g being of type
An, Uq(sl(n)) contains a generalized Lie algebra of dimension n2 − 1. It appears as a finite-
dimensional subspace which is invariant under the adjoint action associated with the Hopf
algebra structure of the quantized enveloping algebra. Its quantum bracket is constructed from
this adjoint action. Specifically, they find this quantum Lie algebra inside the locally finite part
of Uq(sl(n)).

Lyubashenko and Sudbery describe explicitly the generalized Lie algebra sl(2)q and its
enveloping algebra, A = U(sl(2)q), which can be obtained as a quotient of a related algebra
B. The C-algebra B is generated by four generators, X0, X+, X− and C, with relations

q2X0X+ − X+X0 = qCX+

q−2X0X− − X−X0 = −q−1CX−
X+X− − X−X+ = (q + q−1)(C − λX0)X0

CX± − X±C = CX0 − X0C = 0

where λ = q − q−1. The algebra A is obtained from B adding the relation C = 1 (see [18]).
We shall define q-numbers [p] by [p] := (qp − q−p)/(q − q−1).

With this description and the construction of the finite-dimensional irreducible
representations given by Dobrev and Sudbery [6] and Arnaudon [1], we are going to prove
that the algebras B and A verify all the algebraic properties mentioned at the beginning of this
section. As a consequence, the Bernstein duality will be satisfied and it will be represented by
the underlying bimodule of the dual coalgebra in both algebras.

The paper is organized as follows. In the second section, we describe explicitly the centre
of B and A, showing that both algebras are finitely generated as modules over their centres. In
the third section we verify in our algebras the Auslander-regular, Cohen–Macaulay and strong
second-layer conditions and the equality of the injective and Gelfand–Kirillov dimensions.
For this, we introduce an auxiliary algebra S and describe all the three algebras as iterated
Ore extensions using certain special bases. To complete the representation of the Bernstein
duality by R0, we prove in the fourth section the equality of the C-dimension of R/P and
ExtµR(R/P, R), for any cofinite prime ideal P of R = B and A. To do this, we first prove
the corresponding equality for every finite-dimensional simple R-module M , and after this
we obtain the result for any quotient R/P because of the bijection between finite-dimensional
simple R-modules and cofinite prime ideals of R. We shall use some techniques of non-
commutative Groebner bases in the computation of the C-dimension of ExtµR(M, R).

2. The centre

Let us consider the following element of B:

C ′
2 = X2

0 +
q

q + q−1
X−X+ +

q−1

q + q−1
X+X−.
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We have from [18, lemma 3.2] that

CkXm
−Xn

0X
p
+

with k, m, n, p ∈ N a linear basis of B. Using the formulae

X−X+ = C ′
2 − q−1CX0 − q−2X2

0 = λ−2{−(C2 − λ2C ′
2)

+ (1 + q−2)C(C − λX0) − q−2(C − λX0)
2}, (1)

X+X− = C ′
2 + qCX0 − q2X2

0 = λ−2{−(C2 − λ2C ′
2)

+ (1 + q2)C(C − λX0) − q2(C − λX0)
2}, (2)

we may express all the common powers of X− and X+ in each monomial in terms involving
X0, C and C ′

2 only. As a consequence, it can be proved that

X
a−
− Xa+

+ X
a0
0 Cb1C

′b2
2 with a±, a0, b1, b2 ∈ N, a+a− = 0, (3)

is also a basis of B (see [1]). From these expressions it is easy to check that, as well as C, the
element C ′

2 is another central element of B.
For the computation of the centre of B, it is handiest to use another basis obtained from (3).

Since

X0 = −1

λ
(C − λX0) +

1

λ
C

we have that

X
a−
− Xa+

+ (C − λX0)
a0Cb1C

′b2
2 with a±, a0, b1, b2 ∈ N, a+a− = 0, (4)

is a new system of C-generators of B. In fact, we may prove the linear independence of these
elements, so (4) determines a new basis of B as a vector space over C.

In the rest of the paper let us consider q a root of unity. More precisely let l be the smallest
positive integer such that q2l = 1 (we also require that l > 1).

In accordance with [1], the centre of B is given by

C[C, C ′
2, Xl

+, (C − λX0)
l] + C[C, C ′

2, Xl
−, (C − λX0)

l].

Hence B is a finitely generated module over its centre. To obtain this description of the centre
we only need to impose that the elements in (4) commute with each one of the generators X+,
X−, (C − λX0), C and C ′

2 and to make use of the formulae

X+Xk
− = Xk

−X+ + λ−1[k]qk−2Xk−1
− (C − λX0)((1 + q2)C − (1 + q2k)(C − λX0)) (5)

(which can be obtained from equation (3.4b) in [6]),

(C − λX0)
kX+ = q−2kX+(C − λX0)

k (C − λX0)X
k
+ = q−2kXk

+(C − λX0) (6)

and

X−Xk
+ = Xk

+X− − λ−1[k]q−k+2Xk−1
+ (C − λX0)((1 + q−2)C − (1 + q−2k)(C − λX0));

(C − λX0)
kX− = q2kX−(C − λX0)

k;
(C − λX0)X

k
− = q2kXk

−(C − λX0),

obtained by applying to (5) and (6) the automorphism of C-algebras ϕ in B
ϕ(X+) = X−,

ϕ(X−) = X+,

ϕ(X0) = X0,

ϕ(C) = C,

ϕ(C ′
2) = C ′

2,

ϕ(q) = −q−1.
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A simple recursion gives us

X
p
−X

p
+ = λ−2p

p−1∏

r=0

q−2r−1{−qD2q2r + (q + q−1)C(C − λX0) − q−1(C − λX0)
2q−2r} (7)

for every positive integer p, where D is defined by D2 = C2 − λ2C ′
2. Taking p = l in (7) we

obtain a relation between C, C ′
2, Xl

+, Xl
− and (C − λX0)

l , the generators of the centre of B
(see [1]).

The algebra A is also a finitely generated module over its centre. We may check that
the system of C-generators obtained for A taking C = 1 in (4) is also linearly independent.
Therefore

{Xa−
− Xa+

+ (1 − λX0)
a0C ′b

2 : a±, a0, b ∈ N, a+a− = 0}
is a C-basis for A. Computations similar to those performed in B show us that the centre of B
is given by

C[C ′
2, Xl

+, (1 − λX0)
l] + C[C ′

2, Xl
−, (1 − λX0)

l].

As a consequence, A is finitely generated as a module over its centre.

3. Homological properties and regularity conditions

We now study homological properties and regularity conditions of B and A. We shall prove that
these algebras are Auslander regular and Cohen–Macaulay and satisfy the strong second-layer
condition and we shall also compute their global, injective and Gelfand–Kirillov dimensions.
We introduce an auxiliary algebra S, from which B can be obtained as a quotient.

3.1. The algebra S

Let us define S as the C-algebra with generators X1, X2, X3, X4 and X5 and relations

X2X1 = X1X2 − λ−1(q + q−1)X3(X4 − X3)

X3X1 = q−2X1X3, X4X1 = X1X4, X5X1 = X1X5

X3X2 = q2X2X3, X4X2 = X2X4, X5X2 = X2X5

X4X3 = X3X4, X5X3 = X3X5, X5X4 = X4X5.

For our purposes it is interesting to describe S as an iterated Ore extension (see, for instance [19],
for topics related to Ore extensions). Indeed

S = C[X3, X4, X5][X2; σ0][X1; σ1, δ]

where

σ0 : C[X3, X4, X5] −→ C[X3, X4, X5]

σ0(X3) = q2X3, σ0(X4) = X4, σ0(X5) = X5,

is an automorphism,

σ1 : C[X3, X4, X5][X2; σ0] −→ C[X3, X4, X5][X2; σ0]

σ1(X2) = X2, σ1(X3) = q−2X3, σ1(X4) = X4, σ1(X5) = X5,

is an automorphism, and

δ : C[X3, X4, X5][X2; σ0] −→ C[X3, X4, X5][X2; σ0]

δ(X2) = −λ−1(q + q−1)X3(X4 − X3), δ(X3) = δ(X4) = δ(X5) = 0
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is a σ1-derivation. As a consequence, S is a noetherian domain and a C-basis of S is given by
{Xα1

1 X
α2
2 X

α3
3 X

α4
4 X

α5
5 : αi ∈ N}.

Let us now see that B can be obtained as a quotient of S. Identifying

X1 ≡ X+, X2 ≡ X−, X3 ≡ C − λX0,

X4 ≡ C, X5 ≡ C ′
2,

we observe that all the relations of S are also satisfied in B. Another extra relation in B arises
from formulae (1) and (2):

C ′
2 = X−X+ + λ−2{C2 − (1 + q−2)C(C − λX0) + q−2(C − λX0)

2}
= X+X− + λ−2{C2 − (1 + q2)C(C − λX0) + q2(C − λX0)

2}.
Let us consider the element p of S given by

p = X5 − X2X1 − λ−2(X2
4 − (1 + q−2)X4X3 + q−2X2

3)

= X5 − X1X2 − λ−2(X2
4 − (1 + q2)X4X3 + q2X2

3).

Then we may check that there exists an isomorphism of algebras

S

Sp

∼= B.

3.2. Global and injective dimensions

Algebras B and A may be also described as iterated Ore extensions. From the C-basis
{Cα1X

α2− X
α3
0 X

α4
+ : αi ∈ N} of B obtained in [18, lemma 3.2], and using the equality

X0 = −(1/λ)(C − λX0) + (1/λ)C, we have that

{Cα1(C − λX0)
α2X

α3− Xα4
+ : αi ∈ N}

is also a C-basis of B. Similarly as done for S, it can be checked that B may be described as
an iterated Ore extension

B = C[C − λX0, C][X−; σ0][X+; σ1, δ]

where

σ0 : C[C − λX0, C] −→ C[C − λX0, C]

σ0(C − λX0) = q2(C − λX0), σ0(C) = C

is an automorphism,

σ1 : C[C − λX0, C][X−; σ0] −→ C[C − λX0, C][X−; σ0]

σ1(X−) = X−, σ1(C − λX0) = q−2(C − λX0), σ1(C) = C

is an automorphism, and

δ : C[C − λX0, C][X−; σ0] −→ C[C − λX0, C][X−; σ0]

δ(X−) = −λ−1(q + q−1)(C − λX0)(C − (C − λX0)),

δ(C − λX0) = δ(C) = 0

is a σ1-derivation. In particular, B is a noetherian domain.
Analogously, since the algebra A may be obtained from B adding the relation C = 1, we

have that {(1 − λX0)
α1X

α2− X
α3
+ : αi ∈ N} is a C-basis of A, and A can be described as an

iterated Ore extension

A = C[1 − λX0][X−; σ0][X+; σ1, δ]
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where

σ0 : C[1 − λX0] −→ C[1 − λX0]

σ0(1 − λX0) = q2(1 − λX0)

is an automorphism,

σ1 : C[1 − λX0][X−; σ0] −→ C[1 − λX0][X−; σ0]

σ1(X−) = X−, σ1(1 − λX0) = q−2(1 − λX0)

is an automorphism, and

δ : C[1 − λX0][X−; σ0] −→ C[1 − λX0][X−; σ0]

δ(X−) = −λ−1(q + q−1)(1 − λX0)(1 − (1 − λX0)), δ(1 − λX0) = 0

is a σ1-derivation, In particular, A is a noetherian domain.
The former description of S (respectively B; A) and the existence of modules M over S

(over B; over A) such that Ext5
S(M, S) �= 0 (Ext4

B(M, B) �= 0; Ext3
A(M, A) �= 0) as we shall

see in the next section, allows us, applying [19, theorem 7.5.3], to compute the injective and
global dimensions of these algebras:

Proposition 1.

(1) gldim(S) = idim(S) = 5;
(2) gldim(B) = idim(B) = 4;
(3) gldim(A) = idim(A) = 3.

We refer to [19] for topics related to both homological dimensions.

3.3. Gelfand–Kirillov dimension

In this subsection, we are going to compute the Gelfand–Kirillov dimension of the algebras S,
B and A. We refer to [19] for topics related to this dimension (see also [13]).

We start with S. This is an affine C-algebra with generating subspace V =
C{X1, X2, X3, X4, X5}. We consider the standard finite-dimensional filtration {Si}i of S, with
S0 = V 0 = C and Si = ∑i

j=0 V j for any index i � 0.
Given α = (α1, α2, α3, α4, α5) ∈ N5, let us denote Xα = X

α1
1 X

α2
2 X

α3
3 X

α4
4 X

α5
5 . We have

that

{Xα : α ∈ N5}
is a C-basis of S and the subset of the former monomials with α1 + α2 + α3 + α4 + α5 � i

is a C-basis of each subspace Si . The number of elements of this basis is
(
i+5
5

)
, which is a

polynomial in the indeterminate i of degree five. As a consequence, the Gelfand–Kirillov
dimension of S is equal to five.

Similar computations, taking {Cα1(C − λX0)
α2X

α3− X
α4
+ : αi ∈ N} ({(1 − λX0)

α1X
α2− X

α3
+ :

αi ∈ N}) as a C-basis of B (A), prove that GKdim(B) = 4 (GKdim(A) = 3).

3.4. Auslander-regular and Cohen–Macaulay conditions

Let R be a noetherian ring. An R-module M satisfies the Auslander condition if for any non-
negative integer n and any submodule N ⊆ ExtnR(N, R) we have jR(N) � n, jR(N) being
the grade of N , which is defined

jR(N) = inf{i : ExtiR(N, R) �= 0} ∈ N ∪ {∞}.
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The ring R satisfies the Auslander–Gorenstein condition (Auslander-regular condition) if any
finitely generated R-module satisfies the Auslander condition and R has finite left and right
injective dimension (finite global dimension) (see [4]).

A noetherian K-algebra R satisfies the Cohen–Macaulay condition if GKdim(R) ∈ N
and for every finitely generated R-module M we have jR(M) + GKdim(M) = GKdim(R)

(see [15]).

Proposition 2. The algebra S (B; A) satisfies the Auslander-regular and the Cohen–Macaulay
conditions.
Proof. Let us start with S: Auslander regularity follows directly from [17, III,3.4.6], by the
construction of S as an iterated Ore extension. To obtain the Cohen–Macaulay condition we
graduate the base rings that constitute the chain of Ore extensions of S as follows:

R := C[X3, X4, X5];
T := R[X2; σ0]

{Rn}n;
Rn = C(X

α3
3 X

α4
4 X

α5
5 : α3 + α4 + α5 = n);

σ0(X
α3
3 X

α4
4 X

α5
5 ) = q2α3X

α3
3 X

α4
4 X

α5
5 ;

S = T [X1; σ1, δ];
{Tn}n;

Tn = C(X
α2
2 X

α3
3 X

α4
4 X

α5
5 : α2 + α3 + α4 + α5 = n);

σ1(X
α2
2 X

α3
3 X

α4
4 X

α5
5 ) = q−2α3X

α2
2 X

α3
3 X

α4
4 X

α5
5 .

Now applying the second part of [16, lemma] we obtain that S is Cohen–Macaulay. In an
analogous way, the descriptions that we obtained for B and A as iterated Ore extensions also
prove the result for these two algebras. �
Remarks. There are alternative methods to show that B and A satisfy Auslander-regular and
Cohen–Macaulay conditions.

(1) Once we have proved the Auslander-regular and Cohen–Macaulay conditions on S, we
may also use the third part of [16, lemma] to prove these conditions on B and A, because
of the description of B as a quotient of S by the central and regular element of S, p, and
A as a quotient of B by the central and regular element of B, C − 1.

(2) Once Auslander-regular (in particular, Auslander–Gorenstein) and Cohen–Macaulay
conditions are verified by an algebra R, we have another way of computation of injective
and Gelfand–Kirillov dimensions of R: the existence of non-zero finite-dimensional R-
modules and the equality idim(R) = GKdim(R) are equivalent (see [7]).

3.5. Strong second-layer condition

We first recall this technical condition and prove that B and A verify it.
Let R be a noetherian ring. A prime ideal P of R satisfies the left strong second-layer

condition if there is no prime ideal Q � P and an exact sequence of finitely generated uniform
left R-modules

0 −→ L −→ M −→ N −→ 0,

such that

(i) L = Annr
M(P ), where Annr

M(P ) := {m ∈ M : Pm = 0}, the right annihilator of P in M ,
(ii) Annl

R(L′) = P for any left R-submodule 0 �= L′ ⊆ L, and
(iii) Q = Annl

R(M) = Annl
R(N ′) for any left R-submodule 0 �= N ′ ⊆ N .
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The right strong second-layer condition is defined in a similar way. The ideal P is said
to have the strong second-layer condition if it verifies the left and right strong second-layer
conditions. R is said to satisfy the strong second-layer condition if all the prime ideals of R

verify it.
We refer mainly to [5] for relative results on the strong second-layer condition (see

also [3, 8, 12, 19]).

Proposition 3. B and A satisfy the strong second-layer condition.

Proof. This follows directly from the description of B and A as finitely generated modules
over their respective centres and Letzter’s theorem (see [14, 4.2]). �

4. Bernstein duality

We are now going to complete the representation of the Bernstein duality by R0 in R = B
and A by showing that dimC(R/P ) = dimC(ExtµR(R/P, R)) for any cofinite prime ideal
P of R, where µ = GKdim(R) = idim(R). To do this we only need to prove that
dimC(M) = dimC(ExtµR(M, R)), for any finite-dimensional simple R-module M , because
of the bijection between finite-dimensional simple R-modules M and cofinite prime ideals of
R by setting the image of M equal to Annl

R(M) (see [7]).

4.1. Irreducible finite-dimensional representations

We recall the classification of all the finite-dimensional simple R-modules, for R = B and A,
in accordance with the results obtained in [6] and [1].

We start with R = B. Unlike the above authors, we are using the generators of the basis (4)
instead of the basis (3) to describe the action of R over each one of the finite-dimensional simple
R-modules, to make their later treatment easier.

Let M be a finite-dimensional simple B-module. Since C, C ′
2, (C−λX0)

l, Xl
+, Xl

− belong
to the centre of B, they act over M as scalars, which we denote respectively by c, c′

2, z, xl
+, xl

−.
These scalars satisfy the relation (obtained from (7))

xl
−xl

+ = λ−2l
l−1∏

r=0

q−2r−1{−qd2q2r + (q + q−1)cν − q−1ν2q−2r}, (8)

with ν a complex number such that z = νl and d2 = c2 − λ2c′
2.

The study of the different values of the parameters produces the complete list of the
finite-dimensional simple B-modules M .

Case 1. z �= 0 and x− �= 0. M is an l-dimensional vector space with C-basis {v0, . . . , vl−1}
and B-action

C ′
2vp = c′

2vp

Cvp = cvp

(C − λX0)vp = q2pνvp

X−vp = x−vp+1

X+vp = x−1
− λ−2{−d2 + (1 + q−2)cνq2p − q−2ν2q4p}vp−1

with 0 � p � l − 1 and the parameters verifying (8).
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Case 2. z �= 0, x− = 0 and x+ �= 0. M is an l-dimensional vector space with C-basis
{w0, . . . , wl−1} and B-action

C ′
2wp = c′

2wp if 0 � p � l − 1;
Cwp = cwp if 0 � p � l − 1;
(C − λX0)wp = q−2pνwp if 0 � p � l − 1;
X+wp = x+wp+1 if 0 � p � l − 1;
X−w0 = 0;
X−wp = x−1

+ λ−2{−d2 + (1 + q2)cνq−2p − q2ν2q−4p}wp−1

if 1 � p � l − 1,

with c′
2 = λ−2{c2 − (1 + q2)cν + q2ν2}.

Case 3. z �= 0 and x− = x+ = 0. (Highest-weight and lowest-weight representations.)
In this case, we have two types of finite-dimensional simple B-modules.

(1) M is an l-dimensional vector space with C-basis {v0, . . . , vl−1} and B-action

C ′
2vp = c′

2vp if 0 � p � l − 1;
Cvp = cvp if 0 � p � l − 1;
(C − λX0)vp = q2pνvp if 0 � p � l − 1;
X−vp = vp+1 if 0 � p � l − 2;
X−vl−1 = 0;
X+v0 = 0;
X+vp = λ−1[p]qp−2ν((1 + q2)c − (1 + q2p)ν)vp−1 if 1 � p � l − 1,

with ν �= 0 and c such that (1 + q2)c �= (1 + q2p)ν for all p ∈ {1, ..., l − 1}. Moreover
c′

2 = λ−2{c2 − (1 + q−2)cν + q−2ν2}.
(2) For each n ∈ {1, . . . , l − 1}, M is a n-dimensional vector space with C-basis

{v0, . . . , vn−1} and B-action

C ′
2vp = c′

2vp if 0 � p � n − 1;
Cvp = cvp if 0 � p � n − 1;
(C − λX0)vp = q2pνvp if 0 � p � n − 1;
X−vp = vp+1 if 0 � p � n − 2;
X−vn−1 = 0;
X+v0 = 0;
X+vp = λ−1[p]qp−2ν((1 + q2)c − (1 + q2p)ν)vp−1 if 1 � p � n − 1,

with the restriction (1 + q2)c = (1 + q2n)ν and ν �= 0. Moreover c′
2 = λ−2{c2 − (1 + q−2)cν +

q−2ν2}.

Case 4. z = 0. M is a unidimensional vector space with B-action over the basis {v}
C ′

2v = c′
2v

Cv = cv

(C − λX0)v = 0

X−v = x−v

X+vp = x+v

with x+x− = c′
2 − λ−2c2 = −λ−2d2.
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This completes the list of all the finite-dimensional simple B-modules. The corresponding
one for A is obtained from the previous classification by taking c = 1 in all the cases where
this is possible, because of the isomorphism

A ∼= B/(C − 1).

4.2. Dimension of Ext

Using some computational techniques of non-commutative Groebner bases as the first author
developed in [9], we are going to calculate the C-dimension of ExtµR(M, R), for each finite-
dimensional simple R-module M , where µ = GKdim(R) = idim(R). We shall prove that
this dimension coincides, in all cases, with dimC(M).

Start with R = B. Let M be a finite-dimensional simple B-module. We have to prove that

dimC(Ext4
B(M, B)) = dimC(M).

Since B ∼= S/Sp, we may consider M as an S-module by the corresponding change ring. As
p is a central and regular element of S, by Rees’s theorem (see [20, 9.37]) we have

Ext4
B(M, B) ∼= Ext5

S(M, S).

Then, our problem is to compute the C-dimension of Ext5
S(M, S). Let us study it for each of

the types of finite-dimensional simple B-module obtained above.

Case 1. z �= 0 and x− �= 0. In this case, the l-dimensional B-module M is isomorphic, as a
S-module, to

M ∼= S

S(Xl
1 − xl

+, Xl
2 − xl−, X3 − ν, X4 − c, X5 − c′

2, p)

where c, c′
2, ν, xl

+, xl
− ∈ C and are related by (8).

To compute Ext5
S(M, S) we consider the Groebner basis theory on the ring S as it appears

in [9]. The left S-ideal Q = S(Xl
1 − xl

+, Xl
2 − xl

−, X3 − ν, X4 − c, X5 − c′
2, p) is also

described by Q = S(Xl
1 − xl

+, Xl
2 − xl

−, X3 − ν, X4 − c, X5 − c′
2, X1 − x−l

− βXl−1
2 ), with

β = c′
2 − λ−2(c2 − (1 + q−2)νc + q−2ν2). Let us call G1 = X1 − x−l

− βXl−1
2 , G = Xl

1 − xl
+,

G2 = Xl
2 − xl

−, G3 = X3 − ν, G4 = X4 − c, G5 = X5 − c′
2. We can check that

G = {G1, G2, G3, G4, G5},
is a Groebner basis of Q.

Let us consider a free presentation ϕ1 : S5 → Q of Q by setting ϕ1(ei) = Gi ,
(i = 1, . . . , 5).

In order to compute Ker(ϕ1) we write the semisyzygies S(Gi, Gj ), i < j , and divide
them with respect to the Groebner basis G:

S(G1, G2) = Xl
2G1 − X1G2 = xl

−G1 − x−l
− βXl−1

2 G2

S(G1, G3) = q2X3G1 − X1G3 = νG1 − x−l
− βXl−1

2 G3

S(G1, G4) = X4G1 − X1G4 = cG1 − x−l
− βXl−1

2 G4

S(G1, G5) = X5G1 − X1G5 = c′
2G1 − x−l

− βXl−1
2 G5

S(G2, G3) = X3G2 − Xl
2G3 = νG2 − xl

−G3

S(G2, G4) = X4G2 − Xl
2G4 = cG2 − xl

−G4

S(G2, G5) = X5G2 − Xl
2G5 = c′

2G2 − xl
−G5

S(G3, G4) = X4G3 − X3G4 = cG3 − νG4
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S(G3, G5) = X5G3 − X3G5 = c′
2G3 − νG5

S(G4, G5) = X5G4 − X4G5 = c′
2G4 − cG5.

If S(Gi, Gj ) = CijGi −CjiGj = ∑
h QijhGh, where Cij , Cji are coefficients in S and define

sij = Cij ei − Cjiej − ∑
h Qijheh, then it is well known that the set {sij : 1 � i < j � 5} is

a system of generators of Ker(ϕ1); in fact it is a Groebner basis with respect to a monomial
order (see [9]).

Let us define

H1 = s12 = (Xl
2 − xl

−, −X1 + x−l
− βXl−1

2 , 0, 0, 0)

H2 = s13 = (q2X3 − ν, 0, −X1 + x−l
− βXl−1

2 , 0, 0)

H3 = s14 = (X4 − c, 0, 0, −X1 + x−l
− βXl−1

2 , 0)

H4 = s15 = (X5 − c′
2, 0, 0, 0, −X1 + x−l

− βXl−1
2 )

H5 = s23 = (0, X3 − ν, −Xl
2 + xl

−, 0, 0)

H6 = s24 = (0, X4 − c, 0, −Xl
2 + xl

−, 0)

H7 = s25 = (0, X5 − c′
2, 0, 0, −Xl

2 + xl
−)

H8 = s34 = (0, 0, X4 − c, −X3 + ν, 0)

H9 = s35 = (0, 0, X5 − c′
2, 0, −X3 + ν)

H10 = s45 = (0, 0, 0, X5 − c′
2, −X4 + c).

With this notation H = {H1, . . . , H10} is a Groebner basis of Ker(ϕ1). We consider now a
free presentation ϕ2 : S10 −→ Ker(ϕ1) of Ker(ϕ1) by setting ϕ2(ei) = Hi (i = 1, . . . , 10).
In order to compute Ker(ϕ2) we consider the minimum common multiple Xij of Hi and Hj ,
i < j . The only non-zero ones are

X12 = Xl
2X3 X13 = Xl

2X4 X14 = Xl
2X5 X23 = X3X4

X24 = X3X5 X34 = X4X5 X56 = X3X4 X57 = X3X5

X67 = X4X5 X89 = X4X5.

As a consequence Ker(ϕ2) has ten generators, which can be described as

I1 = (X3 − q−2ν, q−2(−Xl
2 + xl

−), 0, 0, q−2(X1 − x−l
− βXl−1

2 ), 0, 0, 0, 0, 0)

I2 = (X4 − c, 0, −Xl
2 + xl

−, 0, 0, X1 − x−l
− βXl−1

2 , 0, 0, 0, 0)

I3 = (X5 − c′
2, 0, 0, −Xl

2 + xl
−, 0, 0, X1 − x−l

− βXl−1
2 , 0, 0, 0)

I4 = (0, q−2(X4 − c), −X3 + νq−2, 0, 0, 0, 0, q−2(X1 − x−l
− βXl−1

2 ), 0, 0)

I5 = (0, q−2(X5 − c′
2), 0, −X3 + νq−2, 0, 0, 0, 0, q−2(X1 − x−l

− βXl−1
2 ), 0)

I6 = (0, 0, X5 − c′
2, −X4 + c, 0, 0, 0, 0, 0, X1 − x−l

− βXl−1
2 )

I7 = (0, 0, 0, 0, X4 − c, −X3 + ν, 0, Xl
2 − xl

−, 0, 0)

I8 = (0, 0, 0, 0, X5 − c′
2, 0, −X3 + ν, 0, Xl

2 − xl
−, 0)

I9 = (0, 0, 0, 0, 0, X5 − c′
2, −X4 + c, 0, 0, Xl

2 − xl
−)

I10 = (0, 0, 0, 0, 0, 0, 0, X5 − c′
2, −X4 + c, X3 − ν).

Again, we have that I = {I1, . . . , I10} is a Groebner basis of Ker(ϕ2) with respect to a particular
monomial order. We continue the process and define a free presentation ϕ3 : S10 −→ Ker(ϕ2)

of Ker(ϕ2) by setting ϕ3(ei) = Ii (i = 1, . . . , 10). Computing the minimum common multiples
Xij of Ii and Ij , i < j , we have that the only non-zero ones are



3694 P Jara and J Jódar

X12 = X3X4 X13 = X3X5 X23 = X4X5

X45 = X4X5 X78 = X4X5.

Thus Ker(ϕ3) has five generators, which are

J1 = (X4 − c, −X3 + q−2ν, 0, Xl
2 − xl

−, 0, 0, q−2(−X1 + x−l
− βXl−1

2 ), 0, 0, 0)

J2 = (X5 − c′
2, 0, −X3 + q−2ν, 0, Xl

2−xl
−, 0, 0, q−2(−X1 + x−l

− βXl−1
2 ), 0, 0)

J3 = (0, X5 − c′
2, −X4 + c, 0, 0, Xl

2 − xl
−, 0, 0, −X1 + x−l

− βXl−1
2 , 0)

J4 = (0, 0, 0, q2(X5 − c′
2), q2(−X4 + c), q2X3−ν, 0, 0, 0, −X1 + x−l

− βXl−1
2 )

J5 = (0, 0, 0, 0, 0, 0, X5 − c′
2, −X4 + c, X3 − ν, −Xl

2 + xl
−).

Again, J = {J1, . . . , J5} is a Groebner basis of Ker(ϕ3) with respect to a particular monomial
order. We now consider a free presentation ϕ4 : S5 −→ Ker(ϕ3) of Ker(ϕ3) by setting
ϕ4(ei) = Ji (i = 1, . . . , 5). If we compute the minimum common multiple Xij of Ji and Jj ,
i < j , the only non-zero one is X12 = X4X5. Thus Ker(ϕ4) has one generator, that is

L = (X5 − c′
2, −X4 + c, X3 − q−2ν, q−2(−Xl

2 + xl
−), q−2(X1 − x−l

− βXl−1
2 ))

and L = {L} is a Groebner basis of Ker(ϕ4).
Putting together all this information, we can build a free resolution of S/Q as follows:

Hence Ext5
S(S/Q, S) ∼= Ext1

S(Ker(ϕ3), S). Taking the free presentation of Ker(ϕ3)

0 −→ Ker(ϕ4)
φ−→ S5 ϕ4−→ Ker(ϕ3) −→ 0

we have a long exact sequence

· · · −→ HomS(S5, S)
φ∗

−→ HomS(Ker(ϕ4), S) −→ Ext1
S(Ker(ϕ3), S) −→ 0 . . . .

Then

Ext1
S(Ker(ϕ3), S) ∼= HomS(Ker(ϕ4), S)

Im(φ∗)

∼= S

(X5 − c′
2, −X4 + c, X3 − q−2ν, q−2(−Xl

2 + xl−), q−2(X1 − x−l
− βXl−1

2 ))S
.

As a consequence, the C-dimension of Ext5
S(M, S) is l.

Case 2. z �= 0, x− = 0, x+ �= 0. In this case, the l-dimensional B-module M is isomorphic,
as a S-module, to the quotient

M ∼= S

S(Xl
1 − xl

+, X2, X3 − ν, X4 − c, X5 − c′
2)

with c′
2, c, ν, xl

+ ∈ C related by c′
2 = λ−2{c2 − (1 + q2)cν + q2ν2}. After developing similar

calculations in the previous case we obtain an isomorphism

Ext5
S(M, S) ∼= S

(q−2(X5 − c′
2), q−2(−X4 + c), q−2(X3 − νq2), −X2, Xl

1 − xl
+)S

from which

dimC(Ext5
S(M, S)) = l = dimC(M).
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Case 3. z �= 0, x− = x+ = 0. In this case we obtained two types of finite-dimensional simple
B-module.

(1) In this case, the l-dimensional B-module M is isomorphic, as a S-module, to

M ∼= S

S(X1, Xl
2, X3 − ν, X4 − c, X5 − c′

2)

where all the parameters are complex numbers and verify that ν �= 0, (1 + q2)c �= (1 + q2p)ν

for all p ∈ {1, . . . , l − 1} and c′
2 = λ−2{c2 − (1 + q−2)cν + q−2ν2}.

Operating similarly to the above cases we obtain an isomorphism

Ext5
S(M, S) ∼= S

(X5 − c′
2, −X4 + c, X3 − q−2ν, −q−2Xl

2, q−2X1)S
.

Hence

dimC(Ext5
S(M, S)) = l = dimC(M).

(2) In this case, the n-dimensional B-module that we obtained for each n ∈ {1, . . . , l − 1}
is isomorphic, as a S-module, to

M ∼= S

S(X1, Xn
2 , X3 − ν, X4 − c, X5 − c′

2)

where all the parameters are complex numbers and verify (1 + q2)c = (1 + q2n)ν, ν �= 0 and
c′

2 = λ−2{c2 − (1 + q−2)cν + q−2ν2}.
Again, operating in a similar way to the former cases, we obtain an isomorphism

Ext5
S(M, S) ∼= S

(X5 − c′
2, −X4 + c, X3 − q−2q2nν, −q2nXn

2 , q−2X1)S

so

dimC(Ext5
S(M, S)) = n = dimC(M).

Case 4. z = 0. In this case, the l-dimensional B-module M is isomorphic, as a S-module, to

M ∼= S

S(X1 − x+, X2 − x−, X3, X4 − c, X5 − c′
2)

where all the parameters are complex numbers and verify x+x− = c′
2 − λ−2c2 = −λ−2d2.

After developing similar computations as in the former cases we obtain an isomorphism

Ext5
S(M, S) ∼= S

(X5 − c′
2, −X4 + c, X3, −q2X2 + x−, q−2X1 − x+)S

from which

dimC(Ext5
S(M, S)) = 1 = dimC(M).

As a consequence of all the above results we have proved the following theorem.

Theorem 4. Let M be a finite-dimensional simple B-module. Then

dimC(M) = dimC(Ext4B(M, B)).

Furthermore, taking into account the isomorphism A ∼= B/(C − 1) and Rees’s theorem
again:

Corollary 5. Let M be a finite-dimensional simple A-module. Then

dimC(M) = dimC(Ext3A(M, A)).
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As a consequence, since for each cofinite prime ideal P of R it is verified that R/P ∼= Mm,
for some finite-dimensional simple R-module M and m ∈ N, we have the desired result.

Corollary 6. Let P be a cofinite prime ideal of either R = B or A. Then

dimC(R/P ) = dimC(ExtµR(R/P, R))

where µ = GKdim(R) = idim(R).
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[7] Gómez J, Jara P and Merino L 1996 Locally finite representations of algebras Commun. Algebra 24 4581–601
[8] Goodearl K R and Warfield R B An introduction to noncommutative noetherian rings London Math. Society

Student Text Series vol 16 (London: Cambridge University Press)
[9] Jara P 1999 Quantum Groebner bases Notas de Trabajo vol 9 (Granada)
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